امّا باید توجه کرد که معمولاً تابع جبرانیه ی در دامنه ی مولد بی نهایت قرار ندارد(یعنی این که مشتقات اول و دوم وجود ندارند) برای مثال تابع جبرانیه ی اختیار فروش را در نظر می گیریم ( در آن قیمت ضربه ای است):
تابع بالا دیفرانسیل پذیر نیست، امّا تحت شرایطی اختیار معاملات اروپایی و با مانع را می توان به صورت معادله ی انتگرو دیفرانسیل جزئی بیان کرد. در قسمت بعد به این موضوع خواهیم پرداخت.
یک اختیار معامله ی اروپایی را با زمان سررسید و تابع جبرانیه ی ، در نظر می گیریم. اگر تابع جبرانیه ی در شرط لیپشیتز صدق کند، یعنی برای یک :
و ارزش این اختیارمعامله باشد، که
۳-۳-۶ قضیه (ارزش اختیار معاملات اروپایی به صورت یک ) : اگر باشد که در آن یک فرایند لوی است و همچنین در شرط زیر صدق کند:
و
یا
آن گاه ارزش اختیار معامله ی روی پیوسته است و روی، است و همچنیندر معادله ی
با شرط
صدق می کند.[۲۴]
تذکر: شرط (۱۷) یا (۱۸) همواری ارزش اختیار معامله را نسبت به دارایی پایه (بنیادین)،تضمین می کند.
۳-۳-۷ نتیجه: تحت شرط های (۱۷)، (۱۸)و (۱۹) و تعریف ، ، و تابع ، روی پیوسته است و همچنین روی ، می باشد و در معادله ی
با شرط اولیه ی ، به ازای هر ، صدق می کند. [۲۴]
۳-۳-۸ اختیار معاملات توأم با مانع و ارتباط آنها با : یک اختیار معامله ی را با زمان سررسید در نظر می گیریم. فرض کنیم قیمت ضربه ای و مانع (سطح مشخص) آن باشند. تابع جبرانیه ی آن به صورت زیر است:
ارزش این اختیار معامله، در زمان برابر است با ارزش تنزیل یافته ی تابع جبرانیه:
۳-۳-۹ گزاره: مارتینگل است. اثبات: بایستی ثابت کرد اگر ، آن گاه با توجه به (۲۰) داریم
با بهره گرفتن از قاعده ی ۶ امید شرطی اثبات کامل می شود.
اولین زمان خروج فرایند از بازه ی را به صورت زیر تعریف می کنیم:
و همچنین تعریف می کنیم:
که در آن
با توجه خاصیت قوی مارکوف، تعریف بالا به صورت زیر در می آید:
و قبل از آن که مانع قطع شود با هم برابر هستند:
در حالتی که باشد، داریم
فرض کنیم تابع در قرار دارد، یا به عبارت دیگر به اندازه ی کافی (یک مرتبه روی و دو مرتبه روی )هموار است. فرض کنیم باشد. با توجه به فرمول ایتو(فصل ۸ [۲۴]):
که در آن
در اینجا ، مولد بی نهایت کوچک تابع می باشد:
تابع مارتینگل است. زیرا با توجه به تعریف (۲۱) داریم.
و طبق گزاره ی ۳-۳-۹ نتیجه می گیریم که مارتینگل است. بنابراین باید بخش رانش (۲۲)برابر با صفر باشد یعنی:
که نتیجه می شود، با احتمال ۱ روی
پس، با احتمال ۱ داریم
امّا باید توجه داشت که تابع هموار نمی باشد، وجود همواری در فضاهای خاص امکان پذیر است که بنسوزان[۶۷] [۱۴] به آن پرداخته است. پس اگر هموار باشد، قضیه ی زیر را برقرار است.
۳-۳-۱۰ قضیه: فرض کنیم ارزش اختیار معامله ی در یک مدل لوی نمایی با ضریب پخشی (تلاطم) و اندازه ی لوی باشد، آن گاه با بهره گرفتن از تغییر متغیر لگاریتمی
داریم
۳-۴ جواب های کلاسیک[۶۸] و ویسکوزیته[۶۹]
همان طور که در بخش قبل گفته شد، تحت یک شرایط خاص، معادلات برای اختیار معاملات اروپایی و توأم بامانع دارای جواب می باشند. امّا از آن جایی که تابع جبرانیه ی این نوع اختیار معاملات در دامنه ی تعریف صدق نمی کنند(همواری تابع جبرانیه ، یک مرتبه روی و دو مرتبه روی ) نیاز به تعریف فضای تابعی داریم، که این همواری برقرار باشد.در فضای تابعی خاص وجود و یکتایی جواب برای در نظر گرفته شده است، که می توان به ]۱۴و۳۴[ مراجعه کرد. این گونه جواب ها را جواب های کلاسیک می نامند. که به صورت دقیق تر می توان تعریف زیر را بیان کرد:
۳-۴-۱ تعریف(جواب های کلاسیک ): تابع هموار را یک جواب کلاسیک از مسأله ی ارزش گذاری اختیار معاملات گویند هرگاه مشتق آن نسبت به ، پیوسته و متعلق به دامنه ی تعریف، برای هر باشد و همچنین در شرط کرانداری مسأله ی و معادله ی
صدق کند.[۲۴]
در معادله ی ارزش گذاری ، پیدا کردن یک جواب کلاسیک ساده نیست و نیاز به فضای تابعی خاص داریم. در واقع این فضا باید به گونه ای باشد که جواب کلاسیک در دامنه ی قرار گیرد. در قسمت بعد یک نوع جواب های جدید را معرفی خواهیم کرد. این جواب ها فقط نیاز به پیوستگی دارند. که به آنها جواب های ویسکوزیته می گویند.
در ابتدا یک جواب هموار، معادله ی
را در نظر می گیریم که این جواب متعلق به است و همچنین تابع هموار را نیز در نظر می گیریم که
اگر یک نقطه ی ماکزیمم سراسری تابع باشد، یعنی
به دلیل این که یک نقطه ی ماکزیمم سراسری است پس
فرم در حال بارگذاری ...